Ping-yeh Chiang

4717 Cherokee St. | College Park, MD, 20740 | (215) 688-3312 | pingyeh.chiang@gmail.com

EDUCATION

University of Maryland - College Park - College Park, MD

Sept. 2018 - Current

Department of Computer Science

Expected Graduation Date: August 2023

Doctor of Philosophy: Computer Science GPA: 3.88

Skills

- Computer Vision, NLP, Security & Privacy
- 7 publications in top tier ML conferences with 2 spotlights and 1 oral in 2022
- Pytorch, Tensorflow, Python, Slurm

PROFESSIONAL EXPERIENCE

Meta— Boston, MA

May 2022 - August 2022

Research Scientist Intern

- Researched efficient method for training models robust to distribution shifts.
- Trained ViTs efficiently on AWS with PyTorch and FFCV.
- Publication resulting from the research: "Universal Pyramid Adversarial Training for Improved ViT Performance" Preprint.

Waymo — Mountain View, CA (Remote)

June 2021 - August 2021

Perception Research Intern

- Researched methods of improving reliability of modern large scale computer vision models, such as point cloud detectors and segmentation models.
- Efficiently trained large scale vision models on hundreds of TPUs with Tensorflow.

Adobe - College Park, MD

May 2020 - August 2020

Machine Learning Engineer Intern

- Researched robust methods of authenticating the ownership of deep learning models
- Implemented prototype for watermarking deep learning models for Adobe Document Reader, which is eventually incorporated into the product.
- Publication resulting from the research: "Certified Neural Network Watermarks with Randomized Smoothing." ICML 2022.

Amplio.ai - Chantilly, VA

May 2019 - August 2019

Machine Learning Engineer Intern

- Built weight lifting posture analysis prototype that analyzes correctness of forms/fatigue level/strength gain using python.
- Fine tuned the state of the art pose estimation models for weight lifting analysis.
- Gathered and cleaned data from Amazon cloudcam for joints annotation.

^{*}Equal contributors

PUBLICATIONS

<u>Universal Pyramid Adversarial Training for Improved ViT Performance</u> <i>Ping-yeh Chiang, Yipin Zhou, Omid Poursaeed, Satya Narayan Shukla, Tom Goldstein, Ser-Nam Lim</i>	Under Review
Gradient-based optimization is not necessary for generalization in neural networks Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein	ICLR 2022 Spotlight
Can neural nets learn the same model twice? investigating reproducibility and double descent from the decision boundary perspective Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk, Micah Goldblum, Tom Goldstein	CVPR 2022 Oral
<u>Certified Watermarks for Neural Networks</u> *Arpit Amit Bansal, *Ping-yeh Chiang, Michael Curry, Hossein Souri, Rama Chellappa, John P Dickerson, Rajiv Jain, Tom Goldstein	ICML 2022 Spotlight
Adversarial Examples Make Strong Poisons Liam Fowl*, Micah Goldblum*, Ping-yeh Chiang*, Jonas Geiping, Wojtek Czaja, Tom Goldstein	NeurIPS 2021
<u>Detection as Regression: Certified Object Detection by Median Smoothing Ping-yeh Chiang,</u> Michael J. Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, Tom Goldstein	NeurIPS 2020
<u>Certifying Strategyproof Auction Networks</u> *Michael J Curry, *Ping-Yeh Chiang, Tom Goldstein, John Dickerson	NeurIPS 2020
<u>Certified Defenses for Adversarial Patches</u> *Ping-Yeh Chiang, *Renkun Ni, Ahmed Abdelkader, Chen Zhu, Chris Studor, Tom Goldstein	ICLR 2020
Witchcraft: Efficient PGD Attack with Random Step Size Ping-Yeh Chiang, Jonas Geiping, Micah Goldblum, Tom Goldstein, Renkun Ni, Steven Reich, Ali Shafahi	ICASSP 2020
Compressing GANs Using Knowledge Distillation *Angeline Aguinaldo, *Ping-Yeh Chiang, *Alex Gain, *Ameya Patil, *Kolten Pearson, Soheil Feizi	Preprint